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Time-Independent Variational Approach
to Inelastic Collisions of a Particle

with a Harmonic Oscillator

Yasutami Takada

Department of Physics, University of California
Santa Barbara
California 93106
and
Institute for Solid State Physics®
University of Tokyo

Roppongi, Minato-ku
Tokyo 106, Japan

Abstract

A variational approach is applied to collisions of a particle
having a mass m with a harmonic oscillator having a mass M in one
dimension. We have used trial functions which become exact in
the limit of either m/M>>1 or m/M<L1. We have derived exact
expressions in the limit m/M — O for inelastic as well as elastic
collisions to leading order 1in the parameter m/M for any

impenetrable interaction potential.

PACS 1987 numbers: 03.65.Nk, 34.50.Lf, 82.65.Nz 79.20.Rf

-1-

W W g W ¥y T W o, W L f_xl‘-d.ﬁ-\l .,r\v.-r\r.r‘-.' CA"L VS A" -r\-( o ™, Wiy W vl'\f W o W W e, e G AP IET A
W N RIS TR N N N AN N NI A I I A N NI PRCATIN N o’la .o. . T TS AT Ty ‘\ WA

"}. ‘-.

X

g

Z

Yos

[ o
(AR AF

x



R A R P R R A2 R P AP U I A W LS DR R LSO LY VWL 070 8 0 AR 0" B AR et Rt 0 10 R0 8 0000 00 9.0 . T - 82 08% 6a A bat by’ ‘-..“.

<
b
v
I. Introduction ﬂ
3
Scattering of atoms from surfaces has received considerable h&
attention in recent years.l Several theoretical methods have been ":
developed to deal with this problem: The stochastic classical }i
1%
trajectory method,?> the eikonal approximation.3 the trajectory ?:
approximation,4 and the semiclassical gaussian basis set method.’ ;‘
So far, however, fully quantum mechanical treatments are limited ﬁﬂ
to theories®® based on (first—-order) distorted wave Born Eﬂ
approximation (DWBA). In this paper, we propoese another quantum éi
mechanical treatment by employing a time-independent variational Ef
approach.g E%»
Variational methods in scattering problems can be classified i;
into three groups: The first one 1is based on the standard g}
variational principles of Hulthen'” and Kohn.'' The second one is §
based on the Schwinger variational principle.'® The last one is Y
the combination of these two. first formulated by Takatsuka and gﬁ
Mckoy13 for the phase shift and then by Gross and RungeN for the ?%
T-matrix. The advantage of this approach is that we can evaluate ii
the T-matrix ras easy as we can in the first approach without if
imposing the standard scattering boundary conditions on trial i}
functions. For this reason, we will take the third approach. ;uﬁ
In the present work, we consider a quantum-mechanical system, g
.
in one dimension, of a particle interacting with a fixed harmonic ;f
"
oscillator. This is a paradigmatic model and provides a ground ;
for testing any approximate method to treat the problem of ::

-2-
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The Hamiltonian of the system is

atom-surface scatterings.

————,+‘-—m2y2+V(x—y). i

o
o - K E N . 3
2m yy? 2 gy? 2 0

e e

>
where m and x are, respectively, the mass and coordinate of the o,

incident particle {"incidon”), M, w, and y are the mass.

frequency, and coordinate of the oscillator respectively, and

Vix-y; 1is the mutual 1interaction which we assume impenetrable.

When we measure energies and lengths in units of hw and (ﬁ/MU>V2

respectively, the Hamiltonian (1) can be rewritten as

1 1
2 3,7 2

2
H= - J19

?
_ S+ V(z-y), (1
2132 y (z-y) (1)

where pu 1s the mass ratio m/M.

In the past many workers treated this system. Secrest and

Johnson'® published a detailed numerical solution more than twenty :

years ago, mostly with an exponential repulsion between particles

(the soft-core potential}. Other approximate methods were also

tlﬁ

applied, for example. a purely classical treatmen which was

developed later to the stochastic classical trajectory method.

X h
) the method of Pechukas'™® which lead to the trajectory "y

approximation, and first-order DWBA .°© However., the most‘“*TifL‘

successful work was published by W.H. Miller'® who dealt with

general semiclassical collision theory including specific

applications to the present model. For the collision parameters ——-—

N chosen by Miller, excellent agreement (to within a few percent’ Cotes N
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with the numerical results was obtained by a simple semiclassical :
-J
S-matrix treatment. The method of Heller® could also give as aj
i
accurate results as Miller's method could. 3
The criterion for the validity of semiclassical calculation
\
-P_"
is that, for given initial oscillator and incident energies. the $\
possible classical energy changes, AE.; (which depend on the angle 3‘
parameter of the oscillator), span several oscillator excitation !‘
y
'
quanta: ;i
9% ¢
An = AE./he » 1. (2) o
®
o
This 1s an expression of the correspondence principle. As is well h, $
(
’
known, suitable semiclassical calculations may give rather .
accurate results even when the condition (2) is not satisfied®. !*
For given initial energies of the oscillator and incidon. :i‘
™
. . L. . . . . =~
the semiclassical condition (2) is violated in two regimes when. >
as 1s well known, classical energy transfer is small: (I} m>>M '
\"
\!
and (ID) m<<M. The first regime is similar to the ol
-
f~
Y
Born-Oppenheimer adiabatic regime for molecules, with the =)
‘\>

oscillator and incidon corresponding respectively to the molecular

;.;.

electrons and nuclei. The second regime may be called 5&:
anti-adiabatic. We will treat primarily these two extreme éE:
situations in this paper. é:
In both regimes the collision is predominantly elastic. The E:
inelastic collisions depend on the details of the potential ;gi
N

V(x-y) 1n the first regime. but they do not in the second one.

Thus we can derive the exact expressions for inelastic collisions

BT

Y
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to leading order in the parameter m/¥M. As will be shown 1n this
paper, the results are the same qualitatively for all impenetrable
potentials, but they differ quantitatively depending on whether
V(x-y) 1is (a) the step-function potential VpB{(-x-y; with the
Heaviside function 6(x), or (b) the hard-core potential Vicox-y..

defined by
Vuc(x-y) =0 for zx>y.
@ for x<y. {3)

/

Results for any other impenetrable potential are reduced to those
in one of these two cases. For example. the soft-core potential,

Vse{x-Yy), glven by

Vee(x-y) = e-a(r-u), (40

provides the same results as Vyclx-y’. .A penetrable, localized

potential gives qualitatively different results. but those results

are the same as those for the delta potential Ad(xr-y’i. where A 1s
defined by
A = j.V(I)dI. 5

We will not consider this case in this paper.)
In Sec.II, we give a variational expression for reflection
amplitudes and relate 1t with expressions in DWBA and the standard

varlational approach. We treat the adiabatic and anti-adiabatic
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regimes in Secs.III and IV, respectively. Finally in Sec.V. wve
discuss some possibilities of improving on the results for the

cases of m ~ M.

II. Variational Expression for Reflection Amplitudes

A. T-matrix

When we divide the Hamiltonian H into the unperturbed part
Hy and the 1interaction V. we can write the Lippman-Schwinger
equation for the exact wave function iEl(”> with outgoing wave

boundary conditions as follows:

f.:‘..f ' ‘:'(f - }\r oy

gty

rTe L™

Ky

|20 > = leo> + Go ">, (6) A

b
(-:

. b

where l¢0.> is the normalized eigen function of Hys and Go '™ is &:
N

the Green's function, defined by o
s

(= ~ 1 ey o

Go = %iF E-Ho+1i€ - (7 o

A
A (3

Quite similarly, the exact wave function <5;(”| with incoming wave -
boundary conditions satisfies the following equation: ;'
N

.‘,\

- — : . .
<pp T = <ol + <oy TVVGy . /8) bie
. .
&
As shown by Gross and Runge'!, the functional {(T).,. introduced by Pua!
o

. - . ~

(T3 = <coflVieo> + <poflVGy Vig, > ’
ol
]

NG

N

. ot
.’-._,'\f-v "~ . o \,,. ’ ‘.'- ‘-'.\ "V\ \..F‘-\ . ‘“ O '. ‘. ,_.., ). SRR VNN Y _\', ;_x'-.' .\.' \";-"_.:,,\3\3.\\\



TR YO TG

g

s,
'
L

&
'

£

-

o

R

.

L
- . »
+ <@p FvGy V| pe> N
e
-“

_ <§_Df (*)|VGO (*)V_VGO (*)VGO (')Vlé, (*)>' g :':

e

vy

is reduced to the exact T-matrix element <gos|V|%,">. when trial

ot
13

functions |o, “'> and <¢; 7| are equal to the exact wave functions

>
v

{

[¢.7> and <g;|, respectively. In addition, (T); is stationary

X

for small variations of trial functions around the exact wave

k o

5 irf?

o

functions. Therefore Eq.(9) gives a variational expression for

W
‘&

5

1 s

the T-matrix.

o

n'{

L

When we define |¢. /> and <®f(ﬁ| by

- »
>
«

re

lo. > = Jeo> + Go D] e >, ‘ (10a)

i
1

¥

and

AAAS

<egf (_)I = <<po/| + <<,Bf(_)|VGo S c10b)

o AdRERRN

AN

v

Eq.(8) can be rewritten in terms of lo: “'> and <¢ﬂ*{ as

(T = <of TIH-Elo: “I>— <gopl Ho-Elg, >, SR

Although trial functions |¢: > and <of 7| are not required to

L@ SIS

satisfy the standaru scattering boundary conditions. the incoming

cate
'{Tf

(outgoing) part of Joi ©> (<¢;|) should be equal to

s
ot

v e
(4
A

7

Ceopl ). This 1is the only requirement for trial functions 1In

Eq.{11).

Ty
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o B. DWBA
A
!
& If we know exact solutions of Ho+Vy where V|, 1s some
)
Y
! interaction potential appropriate to the problem, we can rewrite
) Eq.(11) with the use of the exact solutions of Hp+V,, <Eu“ﬁ|. as
et follows:
Yy
4
[ [T]fl
;c
D)
K VS e (=) < : +)
. = <ot |V1|<po,> + <ypy |H-E | o, > = <@ ’|H0+\1—El‘;| >, (12
)
[ S ) i sfi
' where <pif | satisfies
- <oip M= <popl + <Tip TIVIGYD). (13>
{
§ The first term 1in Eq.(12) 1is the exact T-matrix for thLe
N Hamiltonian Ho+Vy.
LS
) When we take |o. “> and <of O as |z > and <giyp 7
)
: respectively, Eq.(12) gives the DWBA result:
il
K
(T, = <o15 DVileo> + <piy Tlv=-vilg . (14
L
! In this sense, the expression (12) (or equivalently Eq. . 11: 1s
an extension of DWBA.
s
| C. Unitarity
X The variational expression for the S-matrix 1s gliven by the
~1
. following matrix relation: N
: %
; "o
) -
1 \j
-8~ B
. el
S

)
ot s e % Y LN A R Ya e e AT AT At PR b p e A S A R S Yt T P ™



S) = 1-27u(T]. (19)

In general, however. this matrix (S) does not satisfy the unitary

condition:
SS§T = §°S = {. (16

One way to fulfi1ll Eq.(16) 1is to formulate the problem in terms

of the K-matrix'>. but in that case. we have to use standing waves
¢ P instead of ' and o). One of disadvantages to use standing
waves 1s that we have a difficulty in providing a physically
suitable form for ¢ . This seems to be very linconvenient for
our purpose. because our basic strategy is not to perform any
variational procedures. but to use Eq.{11}) to evaluate reflection
amplitudes with trial functions which become exact in some extreme
limit of parameters 1involved 1in the Hamiltonian. Another
practical! difficulty in the k-matrix formalism is that there
appears divergent 1integrals in the formula for an impenetrable
potential.

Another way to satisfy Eq.{(16) is to “normalize" (S) by the

introduction of (S). defined by

(53 = (SIS "4(S) (17a)

= (S, (STAS)H V-, ATh;

For any matrix (S). Eqs.(17a" and (17b: give the same (S). In both
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o
N
‘s
" = 7
" limits of m/M—e and O, (8) coincides with (S) and there 1s no
L) . .
é problem about the unitarity to leading order in the parameter m M. n
l. ‘
i
g D. Reflection amplitudes
5 Let us apply Eq.:11) to the problem of the Hamiltonian given .
-
C by Eq.(1"). The normalied free state |go> for the incident wave
i
L is gilven by
,.. ‘!
|’ ‘!
.l. 0 . ) U
" <x.ylea> = o O(x.yy, 18, ky
) ‘
4. ’
» with )
‘; »
% |’
e , . {
e o, V(r.y, = Ju, 27k, exp (-ik.x)u,(y)., <19} B
- !
‘: where k, is related to the total energy E through :
: :
4 .
d 2 ‘
Xy i . ‘

" - =L 4 + =, : )
B E 51 1 5 20
. p
' o Ly
) . . i i 4
\ and u,(y} 1s the eigen function of the harmonic oscillator. given o
% ;
l by ' o«
g i
- u(y) = (VE20)H (y) exp (-5uP) 21! '

Here H,(x) is an Hermite polynomial. Similarly, the free state =
i for the reflected wave is given by A
N -
K-, A
‘ <gople y> = o Oy, 22
V' dl
» -
) )
i N
'l
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With these definitions for free states, the reflection amplitude

(R): is given by

[R]fl = [S]fl

- —2nifd.rfdy¢, Tt Ly H-Eyo. Wix.y:

oZKR[dIfdyaf(*“(I.yWHﬁ—E)wl'”(r.y (23,
When trial functions @1(”(1.y; = <x.ylg > and
Of *(x.y) = <ps “lx,y> satisfy the standard scattering boundary
conditions
o D(xiuy = o Viriyr + Z Ru®n V(r.y' for 1—o,
) 0 for y—-o, (24a;
and
of T otz ~( 2 o 4 Z; Rin®, O (1, y> for v—o,
0 for 1—-o (24b;
Eq.(23) can be reduced to
R = Rh—ZKﬂ[d{[dypf(”'(I.yE(H—ETQ‘ RS 1297

This is Just an expression in the standard varlational

approach.m'II

“11-
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Therefore an extension of the standard variational
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method is made in Eq.23) in which the second integral replaces
the requirement of the conditions (24a) and (24b) for trial

functions.
I1II. Approach from Adiabatic Regime

In this section., we evaluate (R);, in Eq.(23) with trial
functions which become exact 1n the limit of u>>1 1in the
Hamiltonian (1°). When u becomes very large, we can neglect the
kinetic energy term of incidon in zeroth-order approximation.
Then the equation to determine the motion of oscillator can be

written as

5+ SU + V(Z-g)Wa(yia)= Va(z)Yalyiz), (261

where the boundary conditions for the normalized wave function

Yo(y;x) are given by
Yolyix) — 0 as y — *w, (27

In Eq.(26), r is an “external  parameter and the eigenvalue V,(x)
provides and “adiabatic potential® for the incidon. Namely. the

motion of incidon is determined by

oz &5 +Valt)Walz) = EXalz}, 28

with the following boundary conditions:
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Xo(x) —(u/2nkne t " + /27 kn ekttt for 1—o, o,

; 0 for 1—-m, 29 ]

where 6, is the phase shift to be determined by the solution of
the Schrodinger equation (28). Clearly. as 1r—=, V, 1, and oy
Yo.(y,x) approach n+1,/2 and u,(y) respectively. Thus k., 1Is d

determined by the relation

kz
n

E=2

(300

Nl—

By multiplying X, by Yn,, we obtain a trial wave function as

on D(xiy) = en Dzy) = o0 O = XalxiValyiz, (31 T
wvhich becomes exact in the limit y— o and is expected to be still s

a good trial function for u>>1. The wave funcetion on Y has a L

property of only an elastic reflection with the amplitude <

5 %%

exp (16r).

/’.'v‘ ® ;
!

The 1inelastic reflection amplitudes can be evaluated with

PR g
A A
NN

the use of Eq.(23) (or rather Eq.(25) in this case % and the trial

¥

e

function (31). The result is given by

e ) .
@

(R, = e'%6p

P A
)

&%
»

-1 aY, N SR L .. . .
- gﬁi jni{[dy{ gi—£+)f(y.x;[—xl Cx)Xgfxy 4+ NNyt ix)

e

5
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iy
3
[
()
| R
n(
Q
x}
Yi(ysx) OYs(y x) , . o ’
+ OI a:r Y,(I))\f(r)?. \32/ ::‘
’
\:'
where &;; is the Kronecker's delta function. Equation (32 shows ’&
AL,
that "non-adiabatic” transitions occur only when dY, y:x: éx does
ety
not vanish. Q}
>
In Fig.1, we have shown the numerical results of transition .b
AX
probabilities |(R)ol” and the normalized ones [(R)ol® for the case )
! ‘g
: . g
of the hard-core potential and p=5. Solid curves represent the ﬁ'
.'.
exact results, given by Secrest and Johnson'S, while the broken }w
. Y
(a8
and dotted ones show the results of |[RhoP and I[RhoV ®
[
respectively. We have also calculated the case of p=0.5, but the :ﬁ
"‘-
results for both (R} |% and |(R).|® are not good except near the Ny
\',_
threshold, namely :
EA.
¢
E ~ max{i + &,f + &) (33) s
3 2| 2 ’ AN }.
‘I..
LN
at which the motion of the incidon is always very slow Jﬁ
: Y
irrespective of u. »\
%"
v
®
IV. Approach from Anti-Adiabatic Regime Q}
e
-\
r:.
4 . . e
When p 1is very small, the kinetic energy term 1in the n
Hamiltonian /1°) becomes very 1mportant and the free motion of ::3
oscillator can be neglected 1in zeroth-order approximation. i;f
"
o
However, we cannot neglect the potential term V{(r-y., because this o)
®
is always larger than the kinetic energy for an impenetrable v
2
A
e
'
~-14- v
(%
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potential. Thus in zeroth-order approximation., we should consider

the following equation first:

(- E o v(z-u)) Ka(ziy) - kn Xa(ziy), (34
2u 9x? e ‘ o

with the boundary conditions for X, as

Nalxiy) — [ Ju/27ka e tkar 4 u/2zkne*“”& for r—w,

0 for t——=. (35)

It should be noted that the phase shift &6, will depend on y., in

contrast with the case of Eq.(28). By considering the difference

between Xa(z:y) and X.(x;0), we can write Xa.(x:y) in terms of

LN = X.(x:0) as
fa(xiy) = e ™%, (x-y). (36)

The motion of oscillator can be determined in zeroth-order
approximation as

R - R N = (nelyy (
( ) 0y2 + Zy )Ya(y) (n*'z)Yn(U)- 37)

This is nothing but the equation for a free harmonic oscillator
and the solution is un{y). Combining Xa(x:y) with u,{y). we obtain

a trial wave function as

T xLy) = g OF fantt) (r y) =uncyse VX -yt (38"

(X.y) = ¢n
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which becomes exact in the limit u—G.

Since the trial wave function (38) does not satisfy the
standard scattering boundary conditions (24). we have to use

Eq.{23) to calculate (R};i. The result is

(R, = {—Zrzifdx Vi) Xs(x)Xi(x)
- 2xi%fdxt,?'f<x>+ikffo<r>3 (Ntilde' .(x) + kX, 1))

% [dy up(v)uiy) exp (=i Ckirkp)u). (39)

In deriving Eq.(39), we have used the relations

f dy u.(yYua(y)e™™ = /Zml/2nl (-ia)" e /}L, S (40)
and
fdu un{y) u&&” T - i(% - E§m>fdy un(Ylua. y e, (41)

vhere L.(”(x) is the associated Laguerre polynomial. defined by

I.-a L]
Le W(z) = &E= o(emngmey, (42)

In the following, we will evaluate Eq.(39) for sevsral types of

potentials.

A. Hard-core potential

-16-
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When V(x)=Vic(x). Ya(x) is easily solved to be

Xo(z) = U/ 27k (et —etkd)yg (1) . 143)

Thus we obtain

Ry, = -2

K- (1+u fdy ur(ylui(y) exp (-1 k.o+kfiyl. 44"

As u approaches zero with the total energy E fixed, k. also
approaches zero. Therefore, Eq.(44) has the following expansion

in terms of u:

(R)si = ‘5fi+2iA/kxkffCly ur(yu(y)y. : (45)

This agrees with the exact result obtained by other methods.®<'%*

The elastic term becomes dominant, while the 1inelastic terms
involve only one quantum jumps to leading order of u whose
amplitudes are proportional to /.

In Fig.2, we have shown the results for ‘transition
probabilities |(R)0l|% and the normalized ones |(R)|? for the cases
of (a) p=0.125 and (b) u=0.5, together with the exact results of
Secrest and Johnson.'S (Solid, dotted. and broken curves
correspond., respectively, to the exact results. |[(R)}ol-. and
[CRIf0]%.) The agreement between [(R)!® and the exact results is
excellent for all calculated energies E for the case of p=0.125.
Even for p=0.5, the qualitative features are reproduced in our

calculation of |(RYl®
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B. Soft-core potential
We can solve X.(x) with the use of the modified Bessel

function h,”’z) for the soft-core potential Vi (x). The result is

B A A A 4

o — 4kn (2u/a?) ke [ ol o -ari2
AETIRD. i/u/2tkn « =5 FCI-185.70) Ki2k,/a(A//8u/a" e ) (46)

AT T EFL LA

where Ntx) 1s the gamma function. We can perform the integrals
in Eq.¢39) and obtain
2./k.k Atky

(R, = - k—n#“"“)“”l—“ﬂ —%)

X (B sk D21 Ceirkp) /a) |2 [T (1 (kikp) /00 [
al F(1-12ki/a) T(1-1 2ks/a

" o
-

% S

"fdy up(y)u;(y)e ttkekoy, (47)

= ;{“-,f

ri
L]

As uy approaches =zero, Eq.(47) has the same asymptotic

‘¥ 8"

behavior as given in Eq. (49). Namely, there 1i1s no difference
between the hard- and soft-core potentials in the limit u—0.
The same asymptotic behavior is also expected for any potential
V(x) which becomes infinite at some point x3 and goes to zero
sufficiently quickly for x—«. (The type of potentials considered

here is illustrated in Fig.3.) This can be seen rather easily by

- -,

evaluating the leading correction term 1in the difference of

- yux

reflection amplitude, A(R);,. between V(x) and Vy{x-x:". We have

& 5o 5

%
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ACR)s;, = —Zzijh‘dx[V(x+ro)—Vm(I)]

L LAl

R L Y =
[

dXs(t

(X (2K () + <1+u>e“*-‘)’<t<x>f:dt{ Lttty fy (1) et

-

& '.léf' .I

<y

o

”

L X L L K

+ (1+u)e‘lkflx'!<r)fdt{_ci’:(_é_<t_t_l + ik“'/l(t\)-;exkgl]

. -
=,

S

dey up(u)u(y)e oy, [48)

p-

O

where X.(t) is given in Eq. (43). As u goes to zero. Eq. 48) has

«
«
-

L4
=

the following form:

Y T

s‘
WA )

AR} = —4u7+—£ffdr (V(x+xo) —Vic(x)]x ».
:::"
N

"fdy up(y) ui(y) ety (49) R
%:-
Thus A(R);i 1s at most of the order of g and is negligible. W

Physically. such a general behavior stems from the fact that as u R
approaches zero, the de Broglie wavelength of incidon becomes so
long that the incidon cannot see details of the potential. e
When we treat the case of finite p and small a. Eq. 47 will ﬁ;
P
give much different results from those of Eq.(44). In order to Q"
Ay
. " » Ly
check this situation, we have plotted |(R)wl- in Fig.4 for the N
L")
)
. 5
cases {(a) a=4 and (b) a=0.7 and compared with the exact resutls Q$¢
of Secrest and Johnson' and those in DWBA. ‘To calculate the ®
- “
Yt
results in DWBA. we have used Eq. (14, with Vy{z'=V 12 and s}(
N
:é
Y
®
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2in O (zoy) = o T (2 =P (x,y) = ua(y)Ka(z) (50} E‘-

v

vhere X,/r) is given in Eq.(46).) Solid. broken., and dotted curves =4
correspond, respectively., to the exact results, |[R]m|2 calculated gﬁ

with the use of Eqs.(17) and (47), and the results 1in DWBA. The ;#

mass ratio u 1is taken to be 0.5. For large a, Eq.(47) gives Eg%
e

essentially the same results as Eq.(44) and provides a rather good

e g

description, while DWBA gives quite poor results. The opposite ’lﬁ'g
is true for small a. Physically, the heavy oscillator will not é{"
change 1its motion appreciably by an impulsive collision with a T’:ﬁ
light particle. This is the reason for the success of Eq.(44) ,"\
for the hard-core potential. However, as the “interaction time’ g‘,‘v
becomes longer than « ', which can occur for the very soft %\
potential. we have to consider effects on the motion of ‘N
oscillator. In the trial function (38). those effects are not ::'\':
taken into account. :

5

h

P

g

C. Step-function potential

[ ]

The step-function potential VoB (—x+y) gives a little :E

'l,

different behavior for (R);, in the limit p—0. The wave function :\
Xa(z) is given by -;:
o

yow

WA

Snlx; = V727K, (871} (e7F + Ree'™ ) 3

NG

N

\.

+ 0(~1) (1-Ry ey, (51 o

':é.‘?"
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where
1K+ Kn ; ;
Rn Fyoamre (52
and
Kn = A/2uiVo—-E+n+1,2) . (53
As p approaches zero, [R);, has the following form:
(R}f. = R&f — 1n _V?f (1*R1)(1+Rf)j}iy uf(ylu(yly. (54)

Qualitatively. Eq.(54) indicates the same results as Eq.(45). In

addition, when Vp becomes infinite. Eq. (54) is reduced to Eq. (45"
The same asymptotic behavior of Eq.{(54) is expected for a

potential having the form illustrated in Fig.5 in which the point

9 is determined by the following relation:
f cdx (Vix) ~Vo8(-x+x9)] = O. {95?

The proof ofvthe above statement goes in a similar way as 1in
Sec.IV.B. The difference A(R);, is given by Eq. (48 1n which Vg
is replacead by Vp8(-r) and . is defined in Eq.(51). Thus. as pu
approaches zero, the leading correction terms for A(R);, is given

as follows:

ACRY;, ’vl‘LL_; f dr (V(z+10) - Vo8:(-1))x
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2k;
k,+ky

2k,

X (ki (1=R) Ry pyy

+ ks(1-Rf. R'k

= kf(1=-Rf) (1+Ry) — k(1R 1-Rjf) .
Xjniy u;(y\u.(y)e"“k”“’” ) 56

In deriving Eq.(56), Eq.(95) 1s used. As 1n the previous
subsection, A[R);, 1s at most of the order of p and 1s negligible

compared with the terms 1n Eq.(54).

V. Discussion

We have applied a variational expression (Eq.{11}) to
collisions of a particle with a harmonic oscillator 1n one
dimension. We have used trial functions @n{“”\x.yl Eq. 31,
and 2, (z,y) (Eq.(38)) in the expression to obtain exact results
in the limits p—o and pu—0, where p 1s the mass ratio m M. In
particular, we have derived exact expressions for 1nelastic as
well as elastic collisions to leading order in the parameter u
for any impenetrable interaction potential in the limit u—0.

For finite u, vwe have obtained a rather accurate formula
(Eq.(44)) for the reflection amplitudes. when g 1s smaller than
unity and the interaction is a hard-core type potential. However,
for a soft-core potential and the case of wpu~1. Eq. 44 gives
poorer results than DWBA. We can 1mprove on our results by

introducing some variational parameters 1n our ¢trial functions

and determining them by a variational procedure. One possible
_oo_
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way is to give the trial function in the following way:

¥ X

on(1,y) = Aon @V (r,y) + (1-Aip. MY (x.y). (57

where 4 1s a variational parameter. This 1s the combination of B
the adiabatic and anti-adiabatic approaches. Another way 1s to v

give )

'I‘r;t
ol
2

%
iy

oyt o= up(y)e Nl cx-ay (58

A
. "'

]

where N\, x) = X,(x;y=0) is defined in Egs.(34) and (35;. When

o .
lI.‘I.l
.

CRE)

(ant i

A=1, «¢nix.y) 1s reduced to ¢, {x,y) while for &=0, ¢,{(x,y) 1is

NN 'I,"){\

O

nothing but o¢n @ (r y) defined in Eq.(50). Thus this is the

|

combination of the anti-adiabatic approach with DWBA.

P
LR A

In the near future. we will extend our method to treat

]’..-' i

,..
g
5

collisions in three dimension, in particular, gas-suriacde

Scattering problems.
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Figure Captions

Fig. 1. Transition probabilities for a harmonic osclllator
interacting with a particle as a function of total energy

! E. The hard-core potential is assumed. The mass ratio u

! is 5. Solid, dotted. and broken curves represent, 3

respectively, the exact results of Secrest and Johnson. -

X l[RhoP given by Eq.(32). and l[@yoP given by Eq. (17 with g
the use of those {(R)p». :

) : ~
£ Fig. 2. Transition probabilities for a harmonic oscillator -
é interacting with a particle as a function of total energy ?
‘* E. The mass ratios p are 0.125 and 0.5 in {a, and (b), ?
y .
L respectively. As in Fig.l. the hard-core potential 1is ”
- assumed. The exact results of Secrest and Johnson are ;
.; ~+»s53wn by a solid curve, while |ERMM2 given by Ea. (44;, E:
b and normalized ones [(R}|. given by Eq.{17) with the use A
, oi those [Rljo. are plotted by dotted and broken curves, :
g respectively. é
Fig. 3. A type of potential which gives the reflection amplitudes Z

in the form of Eq.(45) as u approaches zero. Q

0

Fig. 4. Transition probabilities for the soft-core potential case.

) "
N }1
] The mass ratio p is taken to be 0.5. Solid. broken. and -
: dotted curves correspond. respectively. to the exact 9'
4 o N
; results of Secrest and Johnson. [(R)io|~ with the use of ~,
[} ‘.:
b Eq.:17) and (47), and those 1n DWBA. Cases of a=4 and ~
r’ a=0.7 are treated in (a and ‘b, respectively. j
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5. A type of potential which gives the reflection amplitudes

in the form of Eq.(54) in the limit u—0.
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